
Performance and Cost Analysis in Building Network Address Translators
(NATs) as Virtual Network Functions (VNFs) in NFV-based Systems

You-Sheng Liu and Quincy Wu
National Chi Nan University

Nantou, Taiwan
{s107321024, solomon}@ ncnu.edu.tw

ABSTRACT
As the fifth-generation (5G) of cellular networks is thriving, it
provides higher network speed and lower latency to mobile
network users. However, the service providers need to face several
challenges like installing new network devices with considerable
financial investments or quickly deploying new network services.
Network Function Virtualization (NFV) is proposed to solve these
problems in 5G core networks. In this paper, we will introduce the
advantages and challenges of NFV, briefly walk through its
framework. Then, we will discuss how to develop Virtualized
Network Functions (VNF), by taking network address translation
(NAT) as the sample network function. Finally, we will conduct an
experiment to demonstrate that deploying the virtualized NAT on
the generic server is not only with lower cost but also with expected
performance.

Keywords: NFV, NAT

I. INTRODUCTION

Network Function Virtualization (NFV) is a network
architecture that leverages the virtualization technology to
decouple the network functions from the dedicated hardware
appliances onto the standard commercial off-the-shelf while the
network functions are realized as virtualized entities commonly
referred to Virtualized Network Functions (VNFs). In another
word, VNF is a network function running on the virtual machine
(VM) instead of running on the dedicated hardware appliances.
NFV enables flexible network function deployment, reducing
any extra purchases on dedicated hardware appliances for
special network functions; therefore, NFV reduces the overall
capital expenses (CAPEX). Compared to legacy networks which
we must configure each network device manually, NFV
deployment can be fully automated. NFV also reduces
operational expenses (OPEX) by making use of software tools
automatically without on-site installation or configuration.

There are more logical benefits that can be provided by NFV.
First, the life cycle of VNF can be shorter and dynamic
compared to physical devices because these functions can be
added when they are required, provisioned easily through
automated software tools that do not require any on-site
installation or configuration, and torn down to free up the
resources when there is no need for these functions. Second,
NFV allows VNFs to expand or shrink their resource
distribution through various methods. Vertically, as long as the
server has enough resources, VNF is able to adjust its resources
on-demand. From a horizon perspective, it can also create a new

instance that implements the same network function to split the
load with the existing VNF.

Challenges do exist while realizing NFV [1]. Performance is
always an important issue about VNF. Some factors may lead to
degradation of performance. For example, using the general-
purpose server without the hardware acceleration, single VNF or
multiple VNF configuration, the choice of hypervisor. However,
it still leverages virtualization technology, such as single-root
I/O virtualization (SR-IOV) or Peripheral Component
Interconnect (PCI) passthrough [2], to improve the performance.

Figure 1: ETSI NFV Framework [Error! Reference source not
found.]

European Telecommunications Standards Institute (ETSI)
NFV Framework (Fig. 1) is composed of three domains.

1) Virtualized Network Functions (VNFs) that
virtualized entity implements network functions such as
firewall, router, and so on. Each network service (NS) can be
composed of one or more VNFs.

2) NFV Infrastructure (NFVI) is in charge of virtualizing
physical resources like CPUs, memories, disks, and network
adaptors to virtual resources and distributing them to the VNFs
running over the NFVI.

3) NFV Management and Orchestration (NFV MANO)
manages all the activities about virtualization in the NFV
architecture such as the lifecycle management of VNFs, the
resource management of NFVI, and the orchestration of NS.

In this paper, we will use Openstack [5] as NFVI and Open
Source MANO (OSM) [6] [7] as NFV MANO.

Openstack is an open project hosted by Rackspace
Technology and NASA and it aims to provide a common

service for cloud infrastructure. In order to complete the goal,
openstack is divided into many software sub-projects. For
example, Nova is for computing service, Neutron is for
networking service, Keystone is for identity service, etc;
therefore, we can install each sub-project individually to build
our own infrastructure based on requirements.

OSM is an open project hosted by ETSI and it aims to
develop an open source NFV MANO that is aligned with the
ETSI NFV standard information model. OSM covers the three
sub-domains in the NFV MANO, there are NFV Orchestrator
(NFVO), VNF Manager (VNFM), and Virtualized
Infrastructure Manager (VIM) respectively. NFVO is
responsible for managing the lifecycle of NS, VNFM is
responsible for managing the lifecycle of VNF and VIM is
responsible for managing the resources in NFVI. The
operations mentioned above are wrapped in the osm tool.

II. HOW TO DEVELOP VNF

Service function chain (SFC) [4] is usually used to illustrate
the network service and the order of VNFs that are going to be
applied to. As shown in Fig. 2, packets pass through a VNF
firewall, then they are distributed by a VNF load balancer and
finally they reach services like web service or something else.
(PNF stands for Physical Network Function; SaaS means
Software as a Service)

Figure 2. Example of SFC

We usually create more instances for a VNF to keep the
availability and efficiency with the expansion of the service
scale. These VNFs can be used to distribute the network traffic.
Some VNFs may be used in different SFCs. As shown in Fig.
3, there are two services, service A and service B. Service A is
composed of VNF1, VNF2, and VNF3. Service B is composed
of VNF4, VNF2, and VNF5. If the network traffic is low, then
we can launch a single VNF2 instance to satisfy the requirement
as well as minimize the cost. When the network traffic is
growing up, we can dynamically launch more VNF2 instances
to distribute the traffic. However, this may introduces some
problems, such as how to determine the path. Logically,
VNF2A, VNF2B and VNF2C are all VNF2 but physically they
could be deployed on different servers. Therefore, the
placement of VNF is also an issue. [8] explored how to arrange
the VNFs to the appropriate VM so that the VNFs are satisfied
with the resources and the delay is also in the tolerated range?
However, that situation is more complicated and beyond the
scope of this paper. We will focus on the comparison of
performance and cost between the dedicated server and the
generic server.

Figure 3. Multiple SFC in cloud

We will briefly introduce the steps of developing VNFs.
Assume that Openstack and OSM are already installed and
configured. First, we register the Openstack as NFVI to OSM.
You should provide the URL of API, project name, account
information. Second, using the osm tool to create a VNF
package which we focus on the VNF Description (VNFD),
cloud-init, and charm. In VNFD, we can specify the virtual
resource to the VNF and which software image, cloud-init file,
and charm to be used. In cloud-init, we use this file to initialize
our virtual machine. Normally, we use it to configure the
network setting and account setting of the virtual machine.
Charm is created by juju, a free and open-source application
modeling tool developed by Canonical Ltd., which includes a
series of commands for initializing the VNF. Charm is also
responsible for the runtime operation of VNF. Third, using the
osm tool to create an NS package which we only focus on the
NS Description (NSD). In NSD, we can define that which VNFs
we will use, the connectivity among them, and how to deploy
the NS on NFVI. Finally, we can launch the NS for providing
the service.

III. NAT AS VNF

Network address translation (NAT) [9] is an essential
network function for an organization of a certain size, such as
small and medium-sized enterprises or campuses. In the original
design, every device must possess a public IP address to
communicate with other devices on the Internet However, the
amount of public IP addresses is limited and it is impossible to
assign a public IP address to each user. What to do if the users
of an organization want to access the Internet but there is not
enough public address? NAT is proposed to solve this problem.

NAT, which is the address translation between private and
public network addresses and provides transparent routing to
end hosts, is proposed to solve the exhaustion of IPv4 addresses.
It also provides a certain level of security that avoids the end
hosts being directly accessed through the Internet. There are
three types of NAT about address binding: static address
translation, dynamic address translation, and network address
port translation (NAPT).

1) Static address translation is one-to-one address
mapping for end hosts between the private network and public
network during the lifetime of NAT operation.

2) Dynamic address translation, opposite to static address
translation, the mapping relationship between private and
public network is dynamically based on usage requirements and

NAT server will free up the address when the binding is
terminated so the address can be reused.

3) Network address port translation is the most common
NAT type. It can transform transport identifiers, like TCP and
UDP port numbers, ICMP query identifiers, in addition to
transforming IP addresses. As a result, the public addresses
depletion problem can be extremely mitigated by mapping
multiple private addresses to a single public address.

NAT is an essential and necessary network function in
enterprise and campus networks, so we want to design a
virtualized NAT as a VNF, and test its performance to verify
whether it can load the traffic of the usual campus network, and
hope to use a cheaper cost to get better feedback.

IV. COST/PERFORMANCE UNDER CAMPUS NETWORK

In this section, we will compare the cost and performance
between the dedicated network device and the general-purpose
server. Table I illustrates the basic information about the two
devices. Cisco Firewall 2120 has the network processor units
(NPU) that specifically for processing the network packets and
it also supports more network functions. These features make it
more powerful than a generic server, so its price is consequently
much more expensive. Before determining this dedicated server
as your best choice, we should consider if we will use all of the
network functions that it supports, if we can maximize the
resource utilization, and how familiar our users are with the
operating system.

TABLE I. COMPARISON WITH CISCO FIREWALL 2120 AND X86 GENERIC

SERVER

Server Cisco Firewall 2120 x86 Generic
Server

Resource CPU: 6
NPU: 8
Memory: 16 GB
NPU Memory: 8 GB
Disk: 2 SSD Slot

CPU: 16
Memory: 32 GB
Disk: 1 TB, SSD

System Internetwork Operating Any Systems

System (IOS)
Network
Functions

Firewall,
IPS,
And more

Customized Net-
work Functions

Price About 560,000 NTD About 20,000
NTD

REFERENCES

[1] M. Chiosi et al., “ Network Functions Virtualisation: An Introduction,

Benefits, Enablers, Challenges & Call for Action.,” ETSI White Paper,
Oct. 2012.

[2] A.L. M. Falkner, I. Lambadaris and G. Kesidis, “Performance analysis of
virtualized network functions on virtualized systems architectures,”
Computer Aided Modelling and Design of Communication Links and
Networks (CAMAD) 2016 IEEE 21st International Workshop on, 2016.

[3] A.R. C. J. Bernardos, J. C. Zuniga, L. M. Contreras, P. Aranda and P.
Lynch, “Network Virtualization Research Challenges,” IETF RFC 8568,
April 2019.

[4] E. J. Halpern, Ericsson, C. Pignataro, Ed., “ Service Function Chaining
(SFC) Architecture,” IETF RFC 7665, October 2015.

[5] Daniel Grzonka, “The analysis of openstack cloud computing platform:
Features and performance,” Journal of telecommunications and
Information Technology, 2015.

[6] L. Mamushiane, A. A. Lysko, T. Mukute, J. Mwangama and Z. D. Toit,
"Overview of 9 Open-Source Resource Orchestrating ETSI MANO
Compliant Implementations: A Brief Survey," 2019 IEEE 2nd Wireless
Africa Conference (WAC), 2019, pp. 1-7

[7] YILMA, Girma M., et al. “On the challenges and KPIs for benchmarking
open-source NFV MANO systems: OSM vs ONAP,” arXiv preprint
arXiv:1904.10697, 2019.

[8] H. Hawilo, M. Jammal and A. Shami, "Network Function Virtualization-
Aware Orchestrator for Service Function Chaining Placement in the
Cloud," in IEEE Journal on Selected Areas in Communications, vol. 37,
no. 3, pp. 643-655, March 2019

[9] K.E. P. Srisuresh, “Traditional IP Network Address Translator
(Traditional NAT),” IETF RFC 3022, January 2001.

