
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

An Improved Time-Based Encryption Key Rotation
Scheme for Healthcare Databases

Ellie Pin-Yu Chen
Dept. of Computer Science and Information

Engineering
National Chi Nan University

Puli Township, Taiwan
s110321053@ncnu.edu.tw

Quincy Wu
Dept. of Computer Science and Information

Engineering
National Chi Nan University

Puli Township, Taiwan
solomon@ncnu.edu.tw

Meng-Shuo Shen
Puli Christian Hospital
Puli Township, Taiwan
4286@mail.pch.org.tw

Abstract— The practice of encrypting sensitive and critical
data has led to the development of many mature cryptosystems
that almost guarantee the confidentiality of encrypted data.
However, many organizations still suffer security issues caused by
poor key management. Some scenarios indicate that encryption
keys have not been changed for several years. In that case, former
employees still possess valid keys to access the system. Many
systems adopt key rotation as countermeasures, but it is difficult
to find a balance between security and efficiency. This paper
shares the experience in Puli Christian Hospital with key rotation
by proposing an improved algorithm with enhanced security and
higher performance over a previous time-based key rotation
system. It is demonstrated that the new mechanism is more
suitable for healthcare database systems to store sensitive data.

Keywords—AES, key rotation, Puli Christian Hospital, SHA-
256, time-based one-time password

I. INTRODUCTION

Since computers were introduced, many organizations have
stored business data in computer databases to facilitate business
operation and management. Under the principle of defense in
depth, sensitive data are stored in encrypted form on computers
[1], so that an accidental data leakage will not immediately cause
sensitive data to be disclosed. Key management plays a critical
role in ensuring the security of databases that contain important
and sensitive data, such as hospital employee salaries and patient
diagnostics. A good encryption system can help hospitals
prevent targeted and aggressive password cracking attacks, as
well as sensitive data leakage.

Cryptosystem is a sophisticated computer system that
encrypts and decrypts message. Plaintexts are the original
messages. To ensure confidentiality, cryptographic algorithms
are applied upon them to generate ciphertexts which can be
safely stored in computer systems. A good cryptographic
algorithm should guarantee that, without knowing the correct
key for decryption, it will be difficult, or even computationally
intractable, to decrypt the ciphertexts with brute force. Many
famous cryptosystem has been proposed and applied widely in
lots of fields, such as RSA [2] and AES [3].

 However, choosing a strong cryptographic algorithm is not
sufficient to guarantee data security. Key management is also a
critical issue. Not all computer systems prompt users to
manually type the key when data are being encrypted. This is to
prevent the possible accidents that users make some typos and
data are encrypted with a wrong key, which nobody knows the
exact value. Then no one can ever decrypt the data. Therefore,
in practice, many systems simply hardwire the encryption key in
the computer program, to make sure data are always encrypted
with a correct key. Nevertheless, this practice poses a potential
risk that the key may be unchanged for tens of years. Attackers
may be able to crack passwords which are kept the same for
decades due to the fast growth of computing power. In this
situation, key rotation is an important technique to improve data
security [4].

Puli Christian Hospital is a prestigious hospital in central
Taiwan which is famous for its innovative information
technology that facilitates the daily operation of the hospital. It
replaced its old constant-key system by introducing a time-based
algorithm to rotate keys every day[5]. However, cryptanalysis
shows that the new system has a potential vulnerability that for
any user who had ever gotten a valid key to access the database
in a single day, he would be able to apply a hash function (which
is publicly known) a couple of times to obtain information that
allows him to decrypt the ciphertext by brute force for less than
20 thousand tries, which takes within a second. Therefore, it is
crucial to improve the current key rotation mechanism to ensure
the confidentiality of encrypted data stored in the cryptosystem.

The remaining part of this paper is structured as follows. In
Section II, the technical details of the previous time-based key
rotation algorithm in Puli Christian Hospital and its defects are
briefly described. The next section highlights the overview of
the proposed improvement. Subsequently, the detailed
algorithms and experimental results are presented in Section IV
and Section V. The final section concludes with the contribution
and future work of this cryptosystem.

II. PREVIOUS WORK

A. Key Rotation

 A direct improvement on key management is to periodically
change a new key [6]. Any given key is only valid in a limited
time interval, so former employees will not be able to access
the system with former keys. This idea comes from the one-
time password system [7]. This mechanism works well for
authenticating users, since the number of users do not
significantly vary as time goes by. However, in a database
system, if the encryption key is changed periodically, generally
this implies that all encrypted data must be retrieved from the
database, decrypted with the old key, encrypted with the new
key, and then stored back to the database. After the database
accumulated many records containing encrypted data, each key
rotation will inevitably impose heavy burden to the database
system.

B. Previous proposed algorithm

Table I shows all notations in the previous time-based one-
time password (TOTP) algorithm, which we shall call it
Algorithm 1 for convenience. Let X denote the time interval to
rotate keys. When the system starts up, a string of Shared Secret
S and an integer Count should be specified. Other
configurable parameters have default values. The default value
of hash function is SHA-256, which is a one-way function
preventing users from predicting the key in next time interval.
T0 is the initial counter time and usually defaults to zero.

TABLE I. NOTATION OF THE TOTP ALGORITHM

 Symbol Meaning

S

Count

T0

i

X

Hash ()

K(�)

⊕

Shared Secret

An unsigned 32-bit integer (Its default value is
randomly generated.)

Unix time to start counting time steps (The
default value of T0 is 0.)

The amount of time interval X after T0.

Time interval (e.g., 86400 seconds for a day)

Hash function (SHA-256, SHA-512)

Decryption key valid at time interval �

XOR encryption/decryption

 The TOTP algorithm reuses the concept of time-based one-

time passwords from RFC 6238 [8]. The Shared Secret S is
passed to the hash function, along with value Count-i. In other
words, in Step 3 of Algorithm 1, the second parameter in the
Hash() function is the repeated times to hash the first parameter,

which is the Shared Secret S in this algorithm. For example,
Hash(S, 1) stands for applying the hash function on string S
only once. Hash(S, 2) = Hash(Hash(S, 1), 1). More generally,
Hash(S, N) = Hash(Hash(S, N-1), 1), which stands for applying
the hash function N times. As i increases with time, the hash
counter Count-i decreases, as shown in Table II. The number
19662, 19663, 19664, 19665 in the table are the number of
elapsed days since the epoch time (00:00:00 UTC on January 1st,
1970). According to the irreversible characteristic of the hash
chain, we can be assured that it is easy to derive past keys from
a given key, but difficult to derive future keys.

Algorithm 1 – Encryption Algorithm of TOTP

Steps:

1. Calculate the amount of time intervals:

 i = (Current Unix time - T0) / X

2. Encrypt data:

 ciphertext = plaintext ⊕ Hash (S, Count)

3. Generate a key:

 K(i) = Hash (S, Count-i)

4. Dispatch K(i) to user

TABLE II. KEYS IN DIFFERENT TIME INTERVAL OF ALGORITHM 1

Date (2023) Key

November 1st Hash (S, Count - 19662)

November 2nd Hash (S, Count - 19663)

November 3rd Hash (S, Count - 19664)

November 4th Hash (S, Count - 19665)

Algorithm 2 – Decryption Algorithm of TOTP

Steps:

1. The user supplies a key k.

2. Calculate the amount of time intervals:

 i = (Current Unix time - T0) / X

3. Decrypt data:

 h = Hash (K(i), i)

 plaintext = ciphertext ⊕ h

.

If the user possesses the valid key k = K(i) = Hash (S, Count-
i), then in Step 3 of Algorithm 2, Hash(k, i) = Hash(Hash(S,
Count-i), i) = Hash(S, Count). Because the ciphertext

generated in Step 3 of Algorithm 1 is plaintext ⊕ Hash (S,

Count), we can obtain ciphertext ⊕ Hash (k, i) = plaintext ⊕

Hash (S, Count)⊕ Hash (k, i) = plaintext ⊕ Hash (S, Count)

⊕ Hash (S, Count) = plaintext, which is the original plaintext.

C. Problems

As the adage goes, "No rose without a thorn, no sweet without a
sour." After a field trial, it was soon observed that the above
time-based one-time password system still has several serious
deficiencies that must be improved before it can be utilized in
practice.

 Security

The most concerning issue is the data security vulnerability
in the database. The problem is not that the keys delivered to
users are insecure, but that the data is encrypted by applying the
hash function successively. Suppose the key is rotated once a
day, and Mallory obtained one key (e.g., K(19662)) on
November 1st of year 2023. He cannot know for certain what
the key will be used on the next day (November 2nd), but he can
try to decrypt the ciphertext with brute force, using the key
Hash(K(19662), j), where j = 1, 2, 3, ..., 20000. Because any
key k = Hash(S, Count-j) for some j, even if Mallory does not
know the exact value of T0, there always exists some j such that
Hash(k, j) = Hash(S, Count). Applying the XOR operation with
Hash(S, Count) on the ciphertext allows Mallory to obtain the
plaintext. Since the number of days since the epoch time is less
than 20000, this cryptosystem can be cracked by brute force
within 20000 tries!

 Efficiency

In Step 2 of Algorithm 1, we have to apply the hash function
successively for Count times. When Count is a 32-bit
unsigned integer, this step may run the hash function for billions
of times, which in worst case took 50.6 minutes in [5]. In
practice this is quite inefficient and thus unacceptable.

III. PROPOSED SYSTEM

A. Motivation

To overcome the shortcomings of the TOTP
algorithm, an initial recommendation is to increase the size
of Count and i. If it takes 50 minutes to try all 232 possible
values of Count, a simple improvement to secure the system
is to enlarge it as a 64-bit long long integer. Trying all 264
possible values will take about 408,577 years, which is
longer than human civilization since Ancient Egypt, and can
be thought as sufficiently secure. However, this gives rise
to another problem: the time it takes to hash the key (for
Count-i times) to decrypt the plaintext is very long.
Therefore, although enlarging the size of Count delays
the time it takes attackers to crack the key, it also increases
the time to decrypt ciphertexts. In light of the problems
observed above, we propose an improvement to replace the
one-way hash function in Algorithm 1 by a two-way
encryption/decryption function. A formal description of the

algorithm and details will be given in the next section. In
this section, we provide some technical background.

B. Technical Background

 Unix time:

Unix time, also known as POSIX time or epoch time,
is the number of seconds that have elapsed since
00:00:00 UTC on January 1st, 1970.

 XOR encryption: XOR operation can be performed as
bitwise addition modulo 2 on bit streams. By
repeatedly applying the bitwise XOR operation of the
key string on the data, we can quickly encrypt the data
stream, the process is shown in Fig. 1. This proves to
be a very efficient encryption mechanism in many
popular encryption applications, such as RC5 [9] and
Secure Real-time Transport Protocol (SRTP) [10].

Fig. 1. Example of XOR encryption/decryption

 AES cryptosystem:

Advanced Encryption Standard (AES), also known by
its original name Rijndael [11], is a specification for the
encryption of electronic data established by the U.S.
National Institute of Standards and Technology (NIST)
in 2001. AES is a symmetric-key algorithm, meaning
the same key is used for both encrypting and
decrypting the data. High speed and low RAM
requirements were the major advantages of AES. As a
result, AES performed well on a wide variety of
hardware, from 8-bit smart cards to high-performance
computers [12].

.

Fig. 2. AES encryption

IV. ALGORITHMS

A. Notations

There are three changes: (1) Count is enlarged to be a 64-
bit long long integer; (2) Hash() only takes one parameter, so it
is only applied once instead of multiple times; (3) in addition to
the existed symbols in TOTP, new algorithms AES_enc() and
AES_dec() are introduced to perform AES encryption and AES
decryption, respectively.

TABLE III. NOTATION OF NEW ALGORITHM

 Symbol Meaning

S

Count

T0

X

Hash ()

K(i)

AES_enc()

AES_dec()

⊕

Shared Secret

An unsigned 64-bit long long (Its default
value is random generated)

Unix time to start counting time steps (The
default value of T0 is 0.)

Time interval (e.g. 86400 seconds)

Hash function (SHA-256, SHA-512)

Decryption key valid at time step �

AES encryption function

AES decryption function

XOR encryption/decryption

B. Functions

The proposed cryptosystem consists of three functions:
 Encrypt data:

Ciphertext = plaintext ⊕ Hash (S||Count) (1)

The notation || in (1) stands for concatenating the Shared Secret
S with a private value Count which is only known by the
cryptosystem. The system applies the hash function on this
concatenated string to generate a hashed string. For example,
if the hash function is SHA-256, the hashed string will be 32
bytes (256 bits). To store data into the database, the XOR
operation is performed on the plaintext and the hashed string. If
the plaintext is longer than the length of the hashed string, the
hashed string is duplicated automatically to provide sufficient
bit streams to apply the XOR operation.

 Generate K(i):

K(i) = AES_enc (S, Hash(Count-i)) (2)

A key is generated using the AES encryption function, with the
Shared Secret S as the plaintext and the hash of Count-i as the
cryptographic key to encrypt S and produce a string K(i). This
cryptographic key is given to users, and it is valid over only a
limited time interval (in a single day). Because S and Count
are kept secret, attackers will be unable to derive future keys
with the given K(i).

 Decrypt data:

User_S = AES_dec(K(i), Hash (Count-i)) (3)
plaintext = ciphertext ⊕ Hash(User_S||Count) (4)

To decrypt ciphertexts, a user sends K(i) and ciphertext to the
system. The system calculates i at the moment, and calculates
Count-i, Hash(Count-i), then use Hash(Count-i) as the
decryption key to decrypt K(i) to obtain User_S. If the value of
User_S is the same as the Shared Secret S, the plaintext will be
revealed to the user after the XOR operation in (4). Otherwise,
the user will receive a meaningless chaotic string. The Count
remains confidential to every user throughout this process, and
its protracted length in bits makes it difficult to guess using
brute force attacks.

Fig. 3. Encryption flow chart

Fig. 4. Decryption flow chart

C. Algorithms

In Algorithm 3, the complete encryption process is outlined
in five steps. After the required values are initialized, the system
calculates i, which represents the number of time steps between
the initial counter time T0 and the current Unix time. Then, the
ciphertext is derived by performing XOR operation on the
plaintext and the encryption key Hash(S||Count). Since the
Shared Secret S and Count are initialized at Step 1 and kept
unchanged, Step 3 will only be executed when the plaintext
changed, i.e., when new data are inserted into the database. The
fourth step generates the key K(i) by hashing Count-i and
passing it to the AES encryption function with the Shared
Secret S. This allows the key to be rotated on account of various
values of i. Finally, the cryptosystem dispatches the key K(i) to
user.

The decryption process is illustrated in Algorithm 4. When
the user provides the key, the system calculates the value of i
based on the current time. In the second step, the system
computes User_S by performing the AES decryption function
on the key provided by the user plus the string hashing Count-
i. This string, User_S, will be used to decrypt the ciphertext in
the next step. Given that the Shared Secret S and Count remain
unchanged, the key for database encryption, Hash (S||Count), is
also keeps unchanged. The ciphertext will be decrypted
correctly only if the string User_S is the same as the original
Shared Secret S. Performing XOR operation on ciphertext and
Hash(User_S ||Count) obtains the correct result.

In contrast with the TOTP mechanism illustrated in
Algorithm 1 and Algorithm 2, which changes the key for
database encryption periodically, our system decrypts data by
converting the key K(i) to the key for database encryption
(Hash (S||Count)), which is shown in Step 2 and Step 3 of
Algorithm 4. This design keeps the advantage of TOTP
algorithm for rotating keys without re-encrypting data with the
new key.

Algorithm 3 – Encryption of the Improved Algorithm

An administrator inputs Shared Secret, X, Count (optional), T0
(optional), Hash function (optional).

Steps:

1. Assign default values to T0, Count, Hash function if they
are not specified

2. Calculate the amount of time intervals:

 i = (Current Unix time - T0) / X

3. Encrypt data:

 ciphertext = plaintext ⊕ Hash (S||Count)

4. Generate Key:

 K(i) = AES_enc (S, Hash(Count-i))

 5. Dispatch K(i) to user

TABLE IV. KEYS IN DIFFERENT TIME INTERVAL OF ALGORITHM 3

Date (2023) Key

November 1 AES_enc (S, Hash (Count - 19662))

November 2 AES_enc (S, Hash (Count - 19663))

November 3 AES_enc (S, Hash (Count - 19664))

November 4 AES_enc (S, Hash (Count - 19665))

Algorithm 4 – Decryption of the Improved Algorithm

A user gives the key K(i) and ciphertext to the system to decrypt.

Steps:

1. Calculate the amount of time intervals:

 i = (Current Unix time - T0) / X

 2. The system calculates Count-i, and use it to get User_S:

 User_S = AES_dec(K(i), Hash(Count-i))

 3. Decrypt data

 plaintext = ciphertext ⊕ Hash(User_S ||Count)

 4. The user can see the result produced by Step 3.

V. EXPERIMENTAL RESULT

A. Implementation

In our implementation, both encryption and decryption are
implemented as Python programs. We apply the modules
hashlib of Python 3 to perform hash chain and
Crypto.Cipher package [13] to perform AES function.

Let us assume the Shared Secret is a 160-bit ASCII string
“12345678901234567890”, and Count is the value of
10,000,000,000,000,000,000 (10 quintillion). In this example,
the keys would be rotated once a day, so the Time Interval X =
24*60*60 = 86400. T0 = 0. SHA-256 is chosen as the hash
function. The numbers of time interval i is calculated with the

.

same way as the TOTP algorithm. As shown in Table IV, 19662,
19663, 19664, 19665 are the first four days in November of
2023. As an example, we encrypt the plaintext of medical
personnel’s salaries in the hospital, as shown in Table V. After
applying the function of formula (2), we can derive the rotated
keys. In Table VI, only the leading 32 characters of rotated
keys are shown, and the remaining part is shown as an ellipsis
(“…”).

Unlike the frequently changed key, the ciphertexts
converted from the plaintext in Table V remain unchanged in
the database, which is illustrated in Table VII.

TABLE V. THE EXAMPLE PLAINTEXT IN DATABASE

TABLE VI. KEYS IN DIFFERENT TIME INTERVAL OF THE IMPROVED

ALGORITHM

TABLE VII. THE EXAMPLE CIPHERTEXT IN DATABASE

B. Security

In this subsection, we compare the previous TOTP
algorithms and the improved algorithms based on Table VIII,
which focuses on their encryption parameters. To break the key
of the original TOTP algorithm with brute force, an attacker
only has to perform at most 232= 4,294,967,296 hash
operations. According to the calculation in Table IX, we can
see it takes 0.7725 microseconds per hashing. Therefore, from
formula (5) we can see that all the 232 hash operations can be
accomplished in less than 55 minutes. In contrast, in Algorithm
4 if attackers want to guess all possible values of Count, which
is a 64-bit long long integer, there are 264 possibilities. Even if
the attacker has a powerful computer with 7GHz CPU clock
rate, and it takes only 1 CPU clock cycle to compute a hash
function, searching the whole key space will take totally 264 /
(7x109) = 2635249153 seconds, which is approximately 83
years. This is sufficiently secure, as many secret data will be
declassified after 50 years.

0.7725 * 232 = 3317862236 (µs) = 55 (min) (5)

���

�∗���∗�����∗���
 = 83.56 (years) (6)

TABLE VIII. COMPARING ALGORITHM 1 AND ALGORITHM 3

 Algorithm 1 Algorithm 3
Encryption plaintext ⊕

Hash (S, Count)
plaintext⊕
Hash (S||Count)

Key(i) Hash(S, Count-i) AES_enc(S,
Hash(Count-i))

Count 32-bit int 64-bit long long

C. Efficiency

 To assess the operational performance of these algorithms,
we examine the encryption time and key generation time in
worst case of Algorithm 1 and Algorithm 3. The experiments
were run on a computer with CPU speed 3.2 GHz. The hash
library is hashlib of Python 3, and AES function is the
Crypto.Cipher package[13]. The result of operation time of
Hash function and AES function are shown in Table IX, and the
comparison of key generation time and encryption time is
respectively shown in Table X and Table XI, and Fig.5 shows
the trend of key generation time.

 With these measurements, we can infer the performance of
the two algorithms. According to Table X and Table XI, it is
obvious that Algorithm 3 is much faster than Algorithm 1.
Furthermore, according to Fig.5, we can see the rise of value of
Count leads to the steadily growing difference of key
generation time. In Algorithm 1, the hash function is invoked for
a large number of times for both encryption and key generation.
On the contrary, Algorithm 3 only requires a single invocation
of the hash function to encrypt data and one invocation of the
AES encryption function to generate the key. In other words,
key generation time and encryption time of Algorithm 3 is
constant, regardless of the value of Count. On the contrary, in
Algorithm 1 the key generation time and encryption time are
both growing along with the rise of value of Count. Hence, it
is easy to foresee that the performance between these two
algorithms will be even more significant when Count is a 64-
bit long long integer in both two algorithms. As the number of
rotated keys is limited and determined by the value of Count, a
larger value of Count provides better security to this
cryptosystem.

TABLE IX. RUNNING TIME OF FUNCTIONS IN ALOGORITHM 1 AND

ALGORITHM 3

 Operation Time

Hash function 50.6 minutes / 4 billion SHA-256 hashing
= 0. 7725 µs/hashing

AES encryption 0.17 second / 4000 AES Encryption
= 0.0425 ms/encryption

Name Position Salaries

Alice pharmacist 50,000
Bob nurse 60,000
Mallory doctor 100,000
Diana director 1,000,000

Year
(2023)

Key (hex form)

Nov. 1 zgYTr4kZYcyKiBj0h0pNsic9weF5J0LN…
Nov. 2 t0pTIX64KKxxQrETo8l41KSwRLfR2pag…
Nov. 3 YNcCI9iBCZrsOBR35u2rLNX6zTWuTgMj…
Nov. 4 lHS50jZ9HhGx36lNRl3u6ge+KYO5Uhoi…

Whose
salary

Ciphertext
(hex form)

Ciphertext
(decimal form)

Alice a1cb08ccf79a090f 11658421736799078671
Bob a1cb08ccf79a203f 11658421736799084607
Charlie a1cb08ccf79b4cff 11658421736799161599
Diana a1cb08ccf795881f 11658421736798783519

Fig. 5. Key generation time of Algorithm 1 and Algorithm 3 with different
Count

TABLE X. WORST-CASE KEY GENERATION TIME

 Key generation Time

Algorithm 1(32-bit integer) 50.6 minutes

Algorithm 3(64-bit long long) 425 microseconds

TABLE XI. WORST-CASE ENCRYPTION TIME

 Encryption Time

Algorithm 1(32-bit integer) 50.6 minutes

Algorithm 3(64-bit long long) 0.7725 microseconds

VI. CONCLUSIONS AND FUTURE WORK

This paper presents an enhanced time-based key rotation
algorithm for database encryption. The proposed algorithm
preserves the beneficial aspects of previous design, such as the
ability to periodically rotate keys and the ability to encrypt data
only once when data are inserted into the database. This makes
it well-suited for database systems containing lots of encrypted
data. Additionally, the proposed algorithm addresses the
weakness and performance deficiencies of the previous time-
base key rotation algorithm. It will be deployed to replace the
old constant-key cryptosystem to provide better protection for
sensitive data stored in the system.

ACKNOWLEDGEMENT

This research was partially supported by the joint funding
of Puli Christian Hospital and National Chi Nan University
under the grant number 112-PuChi-AIR-005.

REFERENCES

[1] G. Yendamury and N. Mohankumar, "Defense in depth approach on AES
cryptographic decryption core to enhance reliability," 2021 IEEE
International IOT, Electronics and Mechatronics Conference
(IEMTRONICS), Toronto, ON, Canada, 2021, pp. 1-7, doi:
10.1109/IEMTRONICS52119.2021.9422567.

[2] M. Shand and J. Vuillemin, "Fast implementations of RSA
cryptography," Proceedings of IEEE 11th Symposium on Computer

Arithmetic, Windsor, ON, Canada, 1993, pp. 252-259, doi:
10.1109/ARITH.1993.378085.

[3] M. L. Akkar and C. Giraud, “An implementation of DES and AES, secure
against some attacks,”. In Proceedings of International Workshop on
Cryptographic Hardware and Embedded Systems (CHES 2001), pp.309-
318, Paris, France, May 14-16, 2001. https://doi.org/10.1007/3-540-
44709-1_26

[4] A. Everspaugh, K. Paterson, T. Ristenpart, and S. Scott, “Key rotation for
authenticated encryption,” In Proceedings of Advances in Cryptology
(CRYPTO 2017), pp.98-129, Santa Barbara, USA, August 20-24, 2017.
https://doi.org/10.1007/978-3-319-63697-9_4

[5] Ellie Pin-Yu Chen and Quincy Wu, "Time-based secure key management
and rotation of healthcare databases," accepted and to appear in 2023
International Conference on Innovation, Communication and Engineering
(ICICE), Bangkok Thailand, November 9-13, 2023.

[6] L. Bracciale, P. Loreti, E. Raso, and G. Bianchi, “TooLate: cryptographic
data access control for offline devices through efficient key rotation,” In
Proceedings of the 2th Workshop on CPS&IoT Security and Privacy
(CPSIoTSec '21), pp.57-62, New York, USA, November 2021.
https://doi.org/10.1145/3462633.3483982

[7] N. Haller, C. Metz, P. Nesser, and M. Straw, "A one-time password
system", IETF RFC 2289, February 1998.

[8] D. M'Raihi, S. Machani, M. Pei, and J. Rydell, "TOTP: time-based one-
time password algorithm", IETF RFC 6238, May 2011.

[9] R. Baldwin, R. Rivest, "The RC5, RC5-CBC, RC5-CBC-Pad, and RC5-
CTS algorithms", IETF RFC 2040, October 1996.

[10] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman, "The
secure real-time transport protocol (SRTP)", IETF RFC 3711, March
2004.

[11] FIPS PUB 197, "Advanced encryption standard (AES)," National
Institute of Standards and Technology, U.S. Department of Commerce,
November 2001. http://csrc.nist.gov/publications/fips/fips197/fips-
197.pdf

[12] Tony Le Bourne, "ACM Ryzen 7 1700X review - AES Encryption
Performance," Vertez, P.7, February 4, 2017.

[13] PyCryptodome, https://pycryptodome.readthedocs.io/

